mmc2021 Conference Sessions
The conference at mmc2021 will consist of six parallel virtual streams comprising 36 conference and EMAG sessions.
You can view the EMAG session keywords on the EMAG 2021 webpage, the remaining conference sessions are listed below. For more information on our Invited Speakers please click on their name.
AFM & Scanning Probe Microscopies Sessions
AFM/SPM: SPM Techniques on Energy Materials and Processes
Session Chair: Professor Ulrich Stimming (Newcastle University, UK)
This session will bring together researchers from the Scanning Probe Microscopy community that are engaged in studying problems relating to energy. All researchers applying techniques, such as AFM, STM, scanning Kelvin probes, SECPM and more to energy related aspects are invited to submit their contributions. It is the goal of the session to demonstrate how the various SPM techniques are able to study materials as used in energy conversion and storage devices. SPM techniques can often be used under in-situ conditions, i.e. under control of the potential in electrochemical systems; this carries clear advantages compared to any vacuum-based characterisation techniques. It would be an important goal of the session to demonstrate the advantages of the in-situ approach.
AFM/SPM: New Frontiers in Quantum Matter Visualization
Session Chair: Professor Séamus Davis (University of Oxford, UK)
This session will focus on newly developing and highly advanced techniques for atomic-scale visualization of electronic quantum matter. These include scanned Josephson tunneling microscopy, scanned shot-noise microscopy, scanned fano spectroscopy and quantum-phase resolved quasiparticle interference imaging. Areas of application for these techniques include studies of strongly-correlated electron fluids, strongly-correlated superconductors with complex order parameters, and strongly-correlated electronic liquid crystals or electron-pair crystals.
AFM/SPM: Functional Scanning Probe Microscopy for Advanced Material Science
Session Chair: Dr Olga Kazakova (National Physical Laboratory, UK)
This session will bring together researchers in physics, material science, instrumentation, machine learning, computing and beyond, linked by a common interest in the role of SPM to elucidate new physical phenomena. Researchers from industry, academia and research institutions will present their latest developments to foster new ideas and collaborations across multiple disciplines. Submissions covering all forms of SPM techniques, instrumentation and application are welcome, including (but not limited to) SPM for Quantum (incl. magnetic) systems and 2D materials beyond graphene, novel instrumentation and techniques, functional imaging and spectroscopy, advanced data processing, big data, Machine learning, AI in SPM, theory and simulations.
AFM/SPM: Quantitative SPM for Biology, Biomedicine, and Bioinspired Technologies
Session Chair: Professor Brian Rodriguez (University College Dublin, Ireland)
Scanning probe microscopy (SPM) has found wide application in basic and applied biology-related research owing to its capacity for quantitative imaging and spectroscopy of a diverse set of functional properties at the micro- and nanoscale. The high resolution and high force sensitivity of SPM modes and the ability of SPM to operate in physiological conditions, at high speeds, and in conjunction with optical microscopy have made it an indispensable tool, suited to the wide ranging needs of biological research from single proteins to complex heterogeneous materials and biological systems including living cells, tissues, tumours, viruses, bacteria, plants, fungi, etc. The use of SPM for biological research has long been a driving force for application and technique development, and advances in correlative microscopy and multiparametric modes provide opportunities for further contributions in methodology, instrumentation, and analysis. Speakers in this session will showcase how they are using SPM, including structural, nanomechanical, and electrical imaging and spectroscopy modes as well as ion conductance microscopy, to address challenges in biological, biomedical, and bioinspired research.
Frontiers in Bioimaging Sessions
Frontiers in Bioimaging: Development and Applications in Super Resolution Microscopy
Session Chair: Dr Jessica Valli (Heriot-Watt University, UK)
The emergence of super resolution light microscopy techniques in the last quarter-century has allowed researchers to probe further into the hitherto unseen depths of biology and ‘resolve’ many previously-unanswered questions. While there are now several commercially-available super resolution systems, these techniques are still anything but mundane, and new developments continue to push the limits of resolution closer to those achievable by electron microscopy. This session will focus on both the most recent developments in super resolution microscopy and the applications of these techniques to biological frontiers.
Frontiers in Bioimaging: Lightsheet Microscopy: Development and Application
Session Chair: Dr Mike MacDonald (University of Dundee, UK)
Lightsheet microscopy has been with us for over a century, but it is the recent advances in camera technology and computational power that have allowed it to flourish. Initially driven largely by the demand for live, widefield, volumetric imaging in developmental biology, lightsheet imaging is now a tool which is used in a wide variety of applications. In fact, it has even been recently used for histopathological studies of COVID-19. This more established status has not stopped lighsheet imaging from evolving technologically and this session will focus on, and welcome submissions covering, the development through to the application of lightsheet imaging, and especially those doing both.
Frontiers in Bioimaging: Correlative imaging of Organelle Organization and Architecture
Session Chair: Dr Sebastian Munck (VIB Bio Imaging Core KU Leuven, Belgium)
In this session, we bring together the latest news on correlative imaging. We will be exploring the interface of cell and structural biology by combining the power of different approaches. Talks will be highlighting different approaches to study cellular organization, including the architecture of the membranes, compartmentalization, and how organelle architecture directs molecular function. In addition, we will emphasize the correlative aspects of the techniques employed and how to combine them efficiently. Among the methods, we will be discussing is cryo-electron tomography to visualize macromolecules directly and in situ and how to leverage this information in combination with, for example, the selectivity of fluorescence approaches to analyze molecular organization within the cell at the scale of single molecules.
Frontiers in Bioimaging: Quantifying Dynamic Movement in Living Cells
Session Chair: Dr Steve Briddon (University of Nottingham, UK)
The precise co-ordination of molecular interactions in cell compartments fundamentally defines cell behaviour. These movements and interactions between proteins, peptides, lipids and DNA in live cells can be quantified and described using a range of advanced imaging methods, such as Resonance Energy Transfer (RET) techniques (FRET/FLIM), fluorescence fluctuation approaches (FCS etc.) and single particle tracking (SPT). The huge expansion in the availability of these techniques have transformed quantitative biology and allowed robust means to characterise spatiotemporal changes in molecular interactions. This session welcomes studies using advanced or novel techniques in this area, particularly those targeted to living cells.
Life/Physical Sessions
Imaging in Development and Disease
Session Chair: Dr Brian Stramer (King’s College London, UK)
Our ability to image cells in fixed and living tissues is transforming our view of embryogenesis and disease progression. This session aims to highlight the latest developments of high-resolution tissue imaging, which examines either live or fixed samples across a range of spatial and temporal scales. Contributions to this session are encouraged from any area of research where imaging techniques are being applied to the study of animal development and normal or pathological physiology.
Up Close with the Enemy: Imaging Pathogen-host Dynamics
Session Chair: Dr Leandro Lemgruber (University of Glasgow, UK)
The continuous technology development in both light and electron microscopy and the use of correlative microscopy (combining different types of microscopy) have provided exciting opportunities to address novel and important questions relating to the cellular structure of human pathogens and their relationship with the host, both in vitro and in vivo. This session aims to bring the recent works in pathogen imaging and analysis and show how advanced microscopic techniques are continuing to provide far-reaching insights into the biology of pathogens.
Seeing is Believing – Multi-parametric, High-throughput Imaging Flow Cytometry
Session Chair: Dr Ziv Porat (Weizmann Institute of Science, Israel)
Imaging Flow Cytometry (IFC) combines the information-rich imagery of microscopy with the high-throughput, statistically robust strength of Flow Cytometry. IFC can simultaneously image up to 10 fluorescent channels as well as bright field and dark field images, at a rate of up to 5000 cells/sec. In addition to rapid, uniform high-resolution and multi-parametric acquisition, IFC has special advantages in identification of rare populations and hard-to image cells. This session will showcase state-of the art, novel applications demonstrating the unique abilities and advantages of IFC across a broad base of biological fields.
High-plex Cytometry
Session Chair: Dr Karen Hogg (University of York, UK)
High-plex imaging cytometry enables the scrutiny of cells using a high number of quantitative characteristics whilst maintaining their spatial locations. Probes specific for molecular and protein targets provide information of cellular interactions in complex biological systems such as cancer, immunology, cell development, infection and disease. Recent advances in imaging technologies have led to the deep profiling of the tissue microenvironment, the identification of new biomarkers and previously unknown cellular interactions that would have been previously lost in dissociated tissue. Speakers shall provide an expert insight into this application-rich form of imaging and how it has been of benefit to their research.
Volume Microscopy in Physical and Life Sciences
Session Chair: Xiangli Zhong (University of Manchester, UK)
Volumetric microscopy has become one of the most prominent subjects in both the Physical, as well as the Life Sciences, enabled by the rapid development of innovative tools for 3D imaging and spectroscopy such as analytical focused ion beam (FIB) systems for serial sectioning. Three dimensional visualisation significantly enhances our understanding from the macroscopic to the sub-nanometer level in a wide range of systems from metals via ceramics to biocomposites, biominerals and soft biological tissues. The close interaction between Physical and Life Sciences has been an important driver for this progress irrespective of length scale or resolution of the technique. Besides FIB-based methods, relevant examples of emerging techniques include serial-section SEM and TEM, electron Tomography, X-ray micro- and nano-CT, array tomography and gridTAPE TEM . This session containing both contributed and invited talks and posters discusses recent advances in volumetric characterisation techniques using ion beams, X-rays and electrons and focuses on recent novel applications. This session is linked to a separate specific FIB & Sample Preparation workshop which discusses approaches and problems associated with FIB applications and sample preparation methods which enable volume microscopy.
X-ray Microscopy: A Powerful Tool to aid the Understanding of Structures in Life and Physical Sciences
Session Chair: Dr Liz Duke (Diamond Light Source, UK)
Thanks to Roentgen’s work in 1895 the use of X-rays as a research tool in the life and physical sciences is not new. However in recent years their use has increased, particularly but not exclusively in the area of X-ray imaging, aided by developments in many areas including sample preparation, detector technology and availability of commercial laboratory based microscopes. In this session we aim to explore the use of X-ray microscopy in life and physical sciences. We look forward to hearing from those who have used X-rays in their work either as a single technique or in conjunction with other microscopy techniques. The session will be bookended by invited talks. A further three talks will be selected from submitted abstracts and three posters will be chosen for flash talks.
Machine Learning for Image Analysis
Session Chair: Dr Martin Jones (The Francis Crick Institute, UK)
Artificial intelligence based methods, such as machine learning and deep learning, have revolutionised many aspects of image analysis in a broad range of subject areas. As the different communities get to grips with the technical implementation of these methods, there has been a shift in focus to getting cutting-edge tools into the hands of domain experts, who are often not computational experts, with improvements in workflows and accessibility. This session will focus on state-of-the-art AI based image analysis methods and efforts to ensure these tools are made accessible to the wider communities in both life and physical sciences.
Chemical Imaging of Biological Samples using Electron, Ion and X-ray based Techniques
Session Chair: Dr Errin Johnson (University of Oxford, UK)
Microanalysis methods, such as Energy Dispersive X-ray spectrometry (EDS), Electron Energy Loss Spectroscopy (EELS) and Nano-Secondary Ions Mass Spectroscopy (NanoSIMs) are more traditionally associated with physical science than biological applications. However, this is starting to change, with these techniques and others, such as Synchrotron Radiation X-ray Fluorescence (SRXRF), increasingly being used to link chemical composition with ultrastructure in biological samples. For instance, EDS has recently been used to identify secretory cells in pancreatic islets by the elemental makeup of their granules, while NanoSIMs can pinpoint the cellular locations of isotope-labelled metabolites, hormones, drugs and lipids. This interdisciplinary session will include talks from physical scientists and biologists who are applying these techniques to a variety of biological and biomedical samples. It will cover biological sample preparation requirements for chemical imaging, potential challenges, opportunities for multimodal imaging and application examples.
Label Free Imaging
Session Chair: Dr Natalie Belsey (National Physical Laboratory, UK)
Label-free approaches have provided valuable new tools for structural and chemical visualisation of systems where labelling is not possible or desirable, for example medical imaging and other in situ applications. These powerful techniques have also enabled the study of systems where the presence of a tag would cause excessive perturbation to the sample, for example small molecule pharmacokinetics. This session welcomes a broad range of label-free optical microscopy techniques, such as vibrational spectroscopic imaging, multiphoton imaging, Brillouin scattering, interference and phase-contrast microscopies and holotomography. Particular consideration will be given to the elucidation of quantitative information using these methods.
3D+ Image Analysis
Session Chair: Dr Chas Nelson (University of Glasgow, UK)
Imaging and microscopy in both the life and physical sciences spans dimensions including 3D imaging or the inclusion of temporal or spectral information and often all three. Analysing data in these higher dimensions comes with it’s own challenges and often requires bespoke mathematical and algorithmic solutions. This session will focus on state-of-the-art image analysis that enables scientists from both life and physical sciences to answer scientific questions in a quantitative fashion from multidimensional imaging.
Software and Smart Microscopy
Session Chair: Dr Siȃn Culley (University College London, UK)
The modern bioimaging pipeline requires analysis throughout the process - from integrating image analysis into acquisition, e.g. smart microscopy, through to software solutions for the range of quantification pipelines necessary to glean new scientific insights from imaging. This session will focus on state-of-the-art software solutions for automated microscopy and quantitative imaging and post-acquisition analysis.
Operando Microscopy
Session Chair: Dr Hannah Nerl (Fritz-Haber Institute of the Max Planck Society, Germany)
Functional materials cannot be studied reliably when removing materials from their reaction environment. Recent operando studies aim to address this by correlating structure and function of materials under working conditions. Significant technical advances in instrumentation have led to the development and improvement of a range of operando techniques with great impact across scientific fields. These operando approaches have already been shown to allow for the visualization and analysis of materials during synthesis, degradation or function in well-defined environments. Aside from electron microscopy, relevant examples of emerging and improved operando techniques include X-ray microscopy, scanning probe microscopy, light microscopy and atomic force microscopy. This session will contain contributed and invited talks and posters that aim to highlight recent technical advances in operando approaches and the resulting science while studying a range of materials including 2D materials, nanoparticles and catalysts.
Advanced Atom Probe Tomography
Session Chair: Professor Michael Moody (University of Oxford, UK)
Underpinned by advances in instrumentation, experimental protocols and increasingly sophisticated data analysis, Atom Probe Tomography (APT) is now an indispensable characterisation tool in laboratories around the world. The improved capabilities have broadened the scope of investigations and increased the depth of achievable atomic-scale insights. This has nucleated entirely new lines of research, including application to a wider range of material systems ( biological, ceramics, functional materials) and the study of degradation of material microstructure subject to extreme conditions (irradiation, corrosion, hydrogen ingress). This session welcomes submissions pertaining to advanced applications of APT and in particular studies incorporating novel uses of complementary microscopy techniques to enable and enhance APT characterisation.
Diamond Light Source Sessions
Session Chairs: Professor Angus Kirkland (University of Oxford, UK) and Dr Peijun Zhang (University of Oxford, UK)
Diamond Light Source is the UK’s national synchrotron user facility with 32 beamlines along with two state-of-the-art electron microscopy laboratories (eBIC for cryo-EM and ePSIC for aberrationcorrected transmission electron microscopy). Users at Diamond have access to a wide range of cutting edge experimental techniques in microscopy and spectroscopy across multiple length scales, including X-ray imaging, hard and soft X-ray microscopy, XANES and XRD mapping, tomography , and phase-retrieval techniques such as ptychography and coherent diffraction imaging. These have wide ranging applications in fields from biology, environmental, earth and planetary sciences, to materials science and engineering. As for cryo-EM, eBIC provides cryoEM single particle analysis, cryo-electron tomography, electron crystallography, and cryoFIB/SEM. Through this session we aim to showcase a selection of user studies conducted at Diamond, with an introductory staff presentation briefly discussing some of the capabilities and access routes.
Late Breaking
Session Chair: Professor Gail McConnell (University of Strathclyde, UK)
Late breaking submissions are invited to report the very latest results in microscopy. This abstract deadline is not intended to be merely an extension of the general submission deadline: instead this session provides an opportunity for researchers to present the most exciting recent developments in the field.