• Homepage
  • mmc2021 Abstract Database
  • Skin Image Analysis in Contact Capacitive Imaging and High Resolution Ultrasound Imaging
  • Skin Image Analysis in Contact Capacitive Imaging and High Resolution Ultrasound Imaging

    Abstract number
    Presentation Form
    Poster Flash Talk + Poster
    Corresponding Email
    [email protected]
    Stream 5: Imaging in Development and Disease
    Mr Christos Bontozoglou (1), Dr Xu Zhang (2), Mrs Elena Chirikhina (1), Dr Perry Xiao (1)
    1. London South Bank University
    2. Tongjing Zhejiang College

    Skin image analysis, capacitive imaging, high resolution ultrasound, machine learning, skin water content, skin solvent penetration, skin texture, skin thickness.

    Abstract text

    We present our latest research on skin image analysis in Contact Capacitive Imaging and High Resolution Ultrasound Imaging. Contact Capacitive Imaging is a novel imaging technique that can be used for in-vivo skin measurements [1-3]. With Contact Capacitive Imaging, we can analyze the skin water content, skin solvent penetrations, skin texture, and skin micro-relief analysis by mathematical algorithms and machine learning. High Resolution Ultrasound Imaging is the state of the art technology, and can produces high resolution images of the skin and superficial soft tissue to a vertical resolution of about 40 microns [4]. With High Resolution Ultrasound Imaging, we have studies the differences of different layers, such as stratum corneum, epidermis and dermis, around the different locations on the face and around different body parts. In this paper, we will first present the Contact Capacitive Imaging technology and High Resolution Ultrasound Imaging technique, then present the analyzed experimental results and discussions.

    1. Ou, X., Pan, W., Xiao, P., In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM), International journal of pharmaceutics 460 (1-2), 28-32, 2014.
    2. Bontozoglou, C. and Xiao, P. (2019). Applications of Capacitive Imaging in Human Skin Texture and Hair Analysis . MDPI Applied Sciences. 10 (1), p. 256. https://doi.org//10.3390/app10010256
    3. Zhang, X., Pan, W., Bontozoglou, C., Chirikhina, E., Chen, D. and Xiao, P. (2019). Skin Capacitive Imaging Analysis Using Deep Learning GoogLeNet. Computing Conference 2020. London, UK 16 - 17 Jul 2019 Springer.
    4. Chirikhina, E., Chirikhin, A., Xiao, P., Dewsbury-Ennis, S. and Bianconi, F. (2020). In Vivo Assessment of Water Content, Trans-Epidermial Water Loss and Thickness in Human Facial Skin. Applied Sciences. 10 (17), p. e6139. https://doi.org/10.3390/app10176139