
TruAI™ Software with Deep-Learning Technology for Robust, Label-

Free Nucleus Detection and Segmentation in Microwell Plates

Introduction 

Labeling cells with chromatic and, in particular, fluorescent markers is invaluable for the observation and analysis of biological features and 

processes. Prior to the development of these labeling techniques, microscopic analysis of biological samples was performed through label- 

free observation. With the dramatic improvements in image analysis owing to machine-learning methods, label-free observation has recently 

seen a significant resurgence in importance. Olympus’ TruAI deep-learning technology can provide new access to information encoded in 

transmitted-light images and has the potential to replace fluorescent markers used for structural staining of cells or compartments*1 (Figure 1).

Figure 1.From left to right: TruAI prediction of nuclei positions (blue), green fluorescent protein (GFP) histone 2B labels showing nuclei (green), and raw brightfield 
transmission image (gray).



No label-free approach can completely replace fluorescence because information obtained from directly attaching labels to target molecules 

is still invaluable. However, gaining information about the sample with fewer labels has clear advantages:

• Reduced complexity in sample preparation

• Reduced phototoxicity

• Saving fluorescence channels for other markers

• Faster imaging

• Improved viability of living cells by avoiding stress from transfection or chemical markers

The limitations of label-free assays are due in large part to the lack of methods to robustly deal with the challenges inherent to transmitted-

light image analysis. These constraints include:

• Low contrast, in particular, of brightfield images

• Compared to fluorescence microscopy, dust and other imperfections in the optical path negatively influence image quality

• Additional constraints of techniques to improve contrast, such as phase contrast or differential interference contrast (DIC) 

• Higher level of background compared to fluorescence

For live-cell imaging in microwell plates, it can be particularly challenging to acquire transmission images of sufficient quality for analysis 

because of the liquid meniscus of the buffer medium and other noise contributions (Figures 2 and 3). The challenges of microwell plates 

include:

• Phase contrast is often impossible

• DIC is only available in glass dishes

•  Brightfield images are strongly shaded at the well borders 

•  Condensation artifacts may require removing the lid 

•  Particles in suspension increase the background

Figure 2. Brightfield transmission images (10X magnification, HeLa cells) of part of 
one well of a 96-well microplate, showing many of the challenges of analyzing this 
kind of image. For instance, note the scratch on the top row, the shading caused 
by the meniscus effect, and the condensation of evaporated buffer on the lid after 
long-term observation.

Figure 3. Detailed view showing the strong background and inhomogeneity that can 
occur in brightfield transmission imaging. Note the out-of-focus contributions from 
unwanted particles.



Figure 4. Nucleus detection result from a transmission image using a conventional machine learning method. Trained by manually marking the nucleus yellow and the 
background light blue. The detection accuracy is low.

The Technology Behind TruAI™ Image Analysis Software

Transmission brightfield imaging is a natural approach for label-free analysis applications, but it also presents image analysis and 

segmentation challenges that have long been unsolved. To address these challenges, Olympus has integrated an image analysis approach 

based on deep convolutional neural networks, known as TruAI, into cellSens™ software and the scanR system. This kind of neural network 

architecture has recently been described as the most powerful object segmentation technology (Long et al. 2014: Fully Convolutional 

Networks for Semantic Segmentation). Neural networks of this kind feature an unrivaled adaptability to various challenging image analysis 

tasks, making it an optimal choice for the non-trivial analysis of transmission brightfield images for label-free analysis.

In the training phase, TruAI technology automatically learns how to predict the desired parameters, such as the positions and contours of cells 

or cell compartments. During this, the network is fed with images and “ground truth” data (i.e., object masks where the objects of interest are 

annotated). Once the network has been trained, it can be applied to new images and predict the object masks with high precision.

Typically, in machine learning, the annotations (for example, the boundaries of cells) are provided by human experts. This can be a tedious 

and time-consuming step because neural networks require large amounts of training data to fully exploit their potential (Figure 4). So, it is 

essential to have a convenient and easy-to-use annotation tool.

In contrast, the TruAI deep learning method is much easier. The microscope automatically generates the ground truth required for training  

the neural network by acquiring reference images during the training phase. For example, to teach the neural network the robust detection 

and segmentation of nuclei in brightfield images under difficult conditions, the nuclei can be labeled with a fluorescent marker. The 

microscope can automatically acquire a large number of image pairs (brightfield and fluorescence). On the fluorescence channel, the ground 

truth can easily be detected by automated thresholding (Figures 6 and 7). The objects are the ground truth to train the neural network, and 

the resulting network enables the researcher to correctly find the nuclei only using the brightfield images (Figure 5).



Figure 5. Nucleus detection result from a transmission image using TruAI technology. Highly accurate detection is possible.

Since this approach to ground truth generation requires little human interaction, large amounts of training image pairs can be acquired in 

a short time. This enables the neural network to adapt to all kinds of variations and distortions during the training, which results in a neural 

network model that is robust against these challenging issues.

Figure 6. GFP channel of the region shown in Figure 2. Figure 7. Histone 2B GFP label, highlighting the nucleus, on top of the brightfield 
image shown in Figure 3. The GFP channel in this case is used to generate the 
ground truth automatically.



Label-Free Segmentation Training by TruAI™ Technology

To demonstrate a typical use case, a whole 96-well plate with variations in buffer filling level, condensation effect, and meniscus-induced 

imaging artifacts was imaged with the following parameters:

• UPLSAPO objective (10X magnification, 0.6 NA)

• Adherent HeLa cells in liquid buffer (fixed)

• GFP channel: histone 2B GFP as a marker for the nucleus (ground truth)

• Brightfield channel: three Z-slices with a 6 μm step size (to include defocused images in the training)

The ground truth for the neural network training is generated by automated segmentation of the fluorescence images using conventional 

methods. Including slightly defocused images in the example data set during training allows the neural network to better account for small 

focus variations later. The neural network is trained with pairs of ground truth and brightfield images, as depicted in Figure 8. Five wells with 

40 positions each are used as training data. The training phase took about 160 minutes using an NVIDIA GTX 1080Ti graphics card (GPU).

Label-Free Nucleus Detection and Segmentation 

During the detection phase, the learned neural network model is applied to brightfield images, as depicted in Figure 9. For each pixel, it 

predicts whether it belongs to a nucleus or not. The result is a probability image, which can be visualized as shown in Figures 10 and 11 by 

color-coding the probability and generating an overlay image.

Figure 8. Schematic showing the training process of the neural network.
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Figure 9. Schematic showing the application (inference) of the trained neural network.



The images in Figures 10 and 11 show that the neural network, which learned to predict cellular nuclei from brightfield images, finds  

the nuclei at the exact positions they appear in the brightfield image, clearly demonstrating the value of the AI-based approach:

• High-precision detection and segmentation of nuclei

• Optimal for cell counting and geometric measurements, such as area or shape 

• Less than a one second processing time per position (on NVIDIA GTX 1080 Ti GPU)

Figure 10. A probability image of the TruAI prediction of nuclei positions from the 
brightfield image. It shows the same part of the well as in Figure 2.

Figure 11. A probability image overlay on a brightfield image. It shows an example 
of the TruAI prediction of nuclei positions from a brightfield image.

Validation of the Results

Predictions by TruAI technology can be very precise and robust, but it is essential to validate the predictions carefully to help ensure that  

no artifacts or other errors are produced. In this sense, it is similar to a classical image analysis pipeline, but errors are more difficult to  

predict without careful validation since they depend on the data used for training.

Olympus cellSens imaging software is well suited for systematic validation of the TruAI results. Figure 12 compares the software results to  

the fluorescence-based analysis on a single image. It shows that Olympus’ TruAI results correspond well with the fluorescence results.

To validate in more detail, Olympus scanR software can be used. For example, the overall cell counts of the wells can easily be compared  

in the scanR software (Figure 13).

However, the total cell count using TruAI technology is around 3% larger than the cell counts based on fluorescence imaging (1.13 million 

cells versus 1.10 million nuclei).

One reason for this discrepancy was that the TruAI technology was able to detect nuclei that did not produce enough GFP signal to  

be detected with fluorescence. However, another reason was identified by checking the larger objects exceeding ~340 µm2 in size.

These overall values revealed 22,000 (2%) unusually large objects (>340 µm2) in the fluorescence plot compared to 7,000 (0.6%) in  

the TruAI results.

Figure 14 shows a selection of unusually large objects in comparison, indicating the better separation of nuclei in close contact by  

TruAI technology.



Figure 12. Example image of the validation data set. (A) GFP nuclear labels, (B) brightfield image, and (C) TruAI prediction of nuclei positions from the brightfield image, (D) 
overlay of GFP label (green), and TruAI result (blue).
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Figure 13. scanR system: comparison of cell counts on the GFP channel with a conventional approach (left) and on the brightfield channel using the TruAI neural network 
(right). Wells 1–5 have been used for the training and must not be considered for validation.

Figure 14. Scatter plot showing circularity versus area distribution of the 1.10 million nuclei detected in the GFP channel (left) and the 1.13 million nuclei detected in the 
brightfield channel by TruAI technology (right). The yellow rectangle indicates unusually large objects.

Figure 15. Three examples of unusually large objects of the whole validation data set. (A) GFP nuclear labels, (B) brightfield image, and (C) TruAI detection of nuclei positions 
from the brightfield image.
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*1 (Christiansen et al. In Silico Labeling: Predicting 

Fluorescent Labels in Unlabeled Images, Cell, 2018)
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Figure 15. Three examples of unusually large objects of the whole validation data set. (A) GFP nuclear labels, (B) brightfield image, and (C) TruAI detection of nuclei positions 
from the brightfield image.

Conclusions

The TruAI extension for Olympus’ cellSens software can reliably derive nuclei positions and masks in microwells solely from brightfield 

transmission images. The software can achieve this after a brief training stage. After automated object detection, the data could easily be 

edited for training. The network generated for analysis on transmission images can compete or even outperform the classical approach with 

a fluorescence label.

The use of Olympus’ TruAI technology offers significant benefits to many live-cell analysis workflows. Aside from the improved accuracy, 

using brightfield images also avoids the need for using genetic modifications or nucleus markers. Not only does this save time on sample 

preparation, it also saves the fluorescence channel for other markers. Furthermore, the shorter exposure times for brightfield imaging mean 

reduced phototoxicity and faster imaging.
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