
TruAI™ Technology with Deep Learning for Quantitative Analysis 
of Fluorescent Cells with Ultra-Low Light Exposure

Introduction 

Fluorescent labels are an invaluable tool in modern microscopy-based cell studies. The high exposure to excitation light, however,  

influences the cells directly and indirectly through photochemical processes. Adverse experimental conditions can lead to photodamage  

or phototoxicity with an observable impact on cell viability. Even if no direct effect is observed, strong light exposure can influence the cells’ 

natural behavior, leading to undesired effects.

In long-term, live-cell experiments, fluorescence observation with minimal light exposure is particularly desirable. However, lower light 

exposure results in lower fluorescence signal, which typically decreases the signal-to-noise ratio (SNR). This makes it difficult to perform 

quantitative image analysis (Figure 1).

Figure 1. Overview image to illustrate the different light levels involved in this study.



The Technology Behind the TruAI™ Module

From a technological point of view, the analysis of cells with ultra-

low light exposure is a problem of analyzing images with very low 

SNR (Figure 2). To address this issue and analyze low-signal images 

with robustness and precision, Olympus has integrated an image 

analysis approach based on deep neural networks, called TruAI 

technology, into cellSens™ imaging software and the scanR system. 

This kind of neural network architecture has recently been described 

as the most powerful object segmentation technology available.

A neural network of this kind can easily adapt to various challenging 

image analysis tasks, making it an optimal choice for the non-

trivial quantitative analysis of cells with ultra-low light exposure. In 

a training phase, the neural networks automatically learn how to 

predict the desired parameters, such as the positions and contours 

of cells or cell compartments, a process called segmentation of 

objects of interest.

During the training phase, the network is fed with pairs of example 

images and “ground truth” data (i.e., object masks where the 

objects of interest are annotated). Once the network is trained, it 

can be applied to new images and predict the object masks with 

high precision.

Typically, in machine learning, the annotations (e.g., boundaries 

of cells) are provided by human experts. This can be a tedious 

and time-consuming step because neural networks require large 

amounts of training data to fully exploit their large potential. To 

overcome some of these difficulties, cellSens software offers a 

convenient training label interface. 

In addition, the microscope automatically generates the ground 

truth required for training the neural network by acquiring reference 

images during the training phase.

For example, to teach the neural network the robust detection 

and segmentation of nuclei in ultra-low exposure images, the 

microscope automatically acquires large numbers of image pairs 

where one image is taken under optimal lighting conditions, and 

the other is underexposed. These pairs are used to train the neural 

network to correctly analyze the noisy images created with ultra-low 

exposure levels.

Since this approach to ground truth generation requires little human 

interaction, large amounts of training image pairs can be acquired 

in a short time. The neural network can learn to adapt to variations, 

including different SNR levels and illumination inhomogeneities with 

a high variation of training images, which results in a learned neural 

network model that is unaffected by these issues.

Figure 2
From left to right: DAPI-stained nuclei of HeLa cells with optimal illumination (100%), low light exposure (2%), very low light exposure (0.2%), and extremely low light 
exposure (0.05%). The SNR decreases significantly, because signal levels decrease to the camera’s noise level, eventually reaching the detection threshold of the 
camera. Contrast optimized per SNR for visualization only.



Figure 3
Training the neural network. Pairs of images with high and suboptimal SNRs are used to teach the neural network object detection in all SNR conditions.
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Figure 4
Applying the trained neural network (inference). The network has been trained to predict object positions and contours in varying conditions, including very low SNR 
images.

Low-Signal Segmentation Training

To train the neural network to detect nuclei robustly in varying SNR conditions, the system is set up to acquire a whole 96-well plate with  

3 × 3 positions in each well. The following images were acquired for each position:

.  DAPI image with 100% light exposure for an optimal SNR (200 ms exposure time and 100% LED excitation light intensity)

.  DAPI image with 2% light exposure (4 ms exposure time and 100% LED excitation light intensity)

.  DAPI image with 0.2% light exposure (4 ms exposure time and 10% LED excitation light intensity)

.  DAPI image with 0.05% light exposure (4 ms exposure time and 2.5% LED excitation light intensity

The system uses 90 wells for training and excludes the other six wells for later validation. Nuclei positions and contours are detected in the 

DAPI image with an optimal SNR and standard image analysis protocols. The segmentation masks are paired with the images that have 

reduced the SNR and are used for training, as shown in Figure 3. Training took about two hours and 40 minutes on a PC with an NVIDIA 

GeForce GTX 1070 GPU. After training, the neural network can detect nuclei at all exposure times.

Applying Low-Signal Segmentation 

The trained neural network can now be applied to new images with different SNRs following the workflow depicted in Figure 4.  

View the resulting contours at different SNRs in Figure 5.



Direct comparison of the segmentation results at different SNRs 

(Figure 6) and an overlay of contours at different SNRs clearly 

demonstrates the network’s detection capabilities at reduced 

exposure levels (Figure 7). The contours deduced from the images 

overlap almost perfectly (red, yellow, teal), except for the lowest 

light exposure (blue contours). This indicates that the limit for 

robust detection with the neural network lies between 0.2% and 

0.05% light exposure.

Validation of the Results

To validate the results of TruAI technology and confirm the limit  

for quantitative analysis, images of two wells per illumination 

condition are analyzed. Nuclei positions and contours are 

determined, the nuclei are counted, and the area of the nucleus 

and the mean intensity of the DAPI signal are measured. With 

the scanR system’s high-content screening software, the results 

can be analyzed with regard to nuclei populations. The results 

under optimal conditions (Figure 8, top left) show two distinct 

populations, correlating with cells in the G1 (single DNA content) 

and G2 stage (double DNA content) of the cell cycle.

Figure 6
Nuclei segmentation results using TruAI 
technology for different SNR images acquired 
with light exposure levels of (from top left to 
bottom right) 100%, 2%, 0.2%, and 0.05%. 
The contours derived from the lowest SNR 
(bottom right) deviate significantly from the 
correct contours and indicate that the limit  
of the technique for quantitative analysis at 
ultra-low exposure levels is between 0.2%  
and 0.05% of the usual light exposure. Contrast 
optimized per SNR for visualization only.

Figure 5  
Examples of detected objects by TruAI technology in images with different SNRs acquired with light exposure levels of (from left to right) 100%, 2%, 0.2%,  
and 0.05%. Contrast optimized per SNR for visualization only.



When the images are analyzed at only 2% 
exposure, the dynamic range is reduced 
dramatically (Figure 8, top right). However, 
after rescaling the plot, the same distinct 
populations are visible, and a similar 
distribution is summarized in Table 1 for all 
light exposure levels. Even when the same 
method was applied to images exposed at 
0.2%, the values for cell count and cells in the 
G1 and G2 states are almost identical.

At the lowest exposure level (0.05%), the 
dynamic range is reduced even further. At 
this exposure, the distinct populations are 
no longer clearly visible (Figure 8, bottom 
right), and, as a result, the cell count is 
underestimated by about 4% while the 
percentage of cells in G2 is overestimated by 
about 1%. This indicates that when high-
precision measurements are required, the 
SNR limit for successful analysis has been 
reached. However, the results can be used 
for a rough estimate, even with this ultra-low 
light exposure.

Figure 8
scanR scatter plots: cell cycle diagrams derived from images with an optimal SNR (100% light 
exposure) and reduced SNR (2%, 0.2%, and 0.05% light exposure, respectively). Note the different 
scaling of the y-axis.

Figure 7
Nuclei contours detected by the neural network at four different SNRs shown on top of the image acquired with the lowest light exposure level (0.05%). Contrast 
optimized for visualization only.



Conclusions
Quantitative analysis of fluorescence images of nuclei is a basic technique for many 
areas of life science research. Automated detection using TruAI technology can  
save time and improve reproducibility. However, the method needs to be robust  
and should produce reliable results even when the fluorescence signal is low.

Olympus’ TruAI technology enables reliable detection of nuclei at a range of SNR 
levels. The results presented here show that the convolutional neural networks of 
TruAI technology can deliver robust results with as little as 0.2% of the light usually 
required. Therefore, the new technology can ease fast, robust quantitative analysis of 
a large number of images under challenging light conditions. The dramatic decrease 
in light exposure has a minimum influence on cell viability and enables fast data 
acquisition and long-term observation of living cells.
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